arXiv:2405.14893v1 Announce Type: new
Abstract: In day-ahead electricity market, it is crucial for all market participants to have access to reliable and accurate price forecasts for their decision-making processes. Forecasting methods currently utilized in industrial applications frequently neglect the underlying mechanisms of price formation, while economic research from the perspective of supply and demand have stringent data collection requirements, making it difficult to apply in actual markets. Observing the characteristics of the day-ahead electricity market, we introduce two invariance assumptions to simplify the modeling of supply and demand curves. Upon incorporating the time invariance assumption, we can forecast the supply curve using the market equilibrium points from multiple time slots in the recent period. By introducing the price insensitivity assumption, we can approximate the demand curve using a straight line. The point where these two curves intersect provides us with the forecast price. The proposed model, forecasting suppltextbf{Y} and demand cUrve simplified by Invariance, termed as YUI, is more efficient than state-of-the-art methods. Our experiment results in Shanxi day-ahead electricity market show that compared with existing methods, YUI can reduce forecast error by 13.8% in MAE and 28.7% in sMAPE. Code is publicly available at https://github.com/wangln19/YUI.
Source link
lol