Adversarial Magnification to Deceive Deepfake Detection through Super Resolution

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


[Submitted on 2 Jul 2024]

View a PDF of the paper titled Adversarial Magnification to Deceive Deepfake Detection through Super Resolution, by Davide Alessandro Coccomini and 4 other authors

View PDF
HTML (experimental)

Abstract:Deepfake technology is rapidly advancing, posing significant challenges to the detection of manipulated media content. Parallel to that, some adversarial attack techniques have been developed to fool the deepfake detectors and make deepfakes even more difficult to be detected. This paper explores the application of super resolution techniques as a possible adversarial attack in deepfake detection. Through our experiments, we demonstrate that minimal changes made by these methods in the visual appearance of images can have a profound impact on the performance of deepfake detection systems. We propose a novel attack using super resolution as a quick, black-box and effective method to camouflage fake images and/or generate false alarms on pristine images. Our results indicate that the usage of super resolution can significantly impair the accuracy of deepfake detectors, thereby highlighting the vulnerability of such systems to adversarial attacks. The code to reproduce our experiments is available at: this https URL

Submission history

From: Davide Alessandro Coccomini [view email]
[v1]
Tue, 2 Jul 2024 21:17:36 UTC (3,374 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.