Hot-Distance: Combining One-Hot and Signed Distance Embeddings for Segmentation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.17936v1 Announce Type: new
Abstract: Machine learning models are only as good as the data to which they are fit. As such, it is always preferable to use as much data as possible in training models. What data can be used for fitting a model depends a lot on the formulation of the task. We introduce Hot-Distance, a novel segmentation target that incorporates the strength of signed boundary distance prediction with the flexibility of one-hot encoding, to increase the amount of usable training data for segmentation of subcellular structures in focused ion beam scanning electron microscopy (FIB-SEM).



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.