arXiv:2406.11872v1 Announce Type: new
Abstract: The Lottery Ticket hypothesis proposes that ideal sparse subnetworks called lottery tickets exist in the untrained dense network. The Early Bird hypothesis proposes an efficient algorithm to find these winning lottery tickets in convolutional neural networks using the novel concept of distance between subnetworks to detect convergence in the subnetworks of a model. However, this approach overlooks unchanging groups of unimportant neurons near the end of the search. We propose WORM, a method that exploits these static groups by truncating their gradients, forcing the model to rely on other neurons. Experiments show WORM achieves faster ticket identification training and uses fewer FLOPs, despite the additional computational overhead. Additionally WORM pruned models lose less accuracy during pruning and recover accuracy faster, improving the robustness of the model. Furthermore, WORM is also able to generalize the Early Bird hypothesis reasonably well to larger models such as transformers, displaying its flexibility to adapt to various architectures.
Source link
lol