DocSum: Domain-Adaptive Pre-training for Document Abstractive Summarization

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.08196v1 Announce Type: new
Abstract: Abstractive summarization has made significant strides in condensing and rephrasing large volumes of text into coherent summaries. However, summarizing administrative documents presents unique challenges due to domain-specific terminology, OCR-generated errors, and the scarcity of annotated datasets for model fine-tuning. Existing models often struggle to adapt to the intricate structure and specialized content of such documents. To address these limitations, we introduce DocSum, a domain-adaptive abstractive summarization framework tailored for administrative documents. Leveraging pre-training on OCR-transcribed text and fine-tuning with an innovative integration of question-answer pairs, DocSum enhances summary accuracy and relevance. This approach tackles the complexities inherent in administrative content, ensuring outputs that align with real-world business needs. To evaluate its capabilities, we define a novel downstream task setting-Document Abstractive Summarization-which reflects the practical requirements of business and organizational settings. Comprehensive experiments demonstrate DocSum’s effectiveness in producing high-quality summaries, showcasing its potential to improve decision-making and operational workflows across the public and private sectors.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.