Target-driven Attack for Large Language Models

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Target-driven Attack for Large Language Models, by Chong Zhang and 5 other authors

View PDF
HTML (experimental)

Abstract:Current large language models (LLM) provide a strong foundation for large-scale user-oriented natural language tasks. Many users can easily inject adversarial text or instructions through the user interface, thus causing LLM model security challenges like the language model not giving the correct answer. Although there is currently a large amount of research on black-box attacks, most of these black-box attacks use random and heuristic strategies. It is unclear how these strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we propose our target-driven black-box attack method to maximize the KL divergence between the conditional probabilities of the clean text and the attack text to redefine the attack’s goal. We transform the distance maximization problem into two convex optimization problems based on the attack goal to solve the attack text and estimate the covariance. Furthermore, the projected gradient descent algorithm solves the vector corresponding to the attack text. Our target-driven black-box attack approach includes two attack strategies: token manipulation and misinformation attack. Experimental results on multiple Large Language Models and datasets demonstrate the effectiveness of our attack method.

Submission history

From: Chong Zhang Mr. [view email]
[v1]
Sat, 9 Nov 2024 15:59:59 UTC (3,128 KB)
[v2]
Wed, 13 Nov 2024 11:28:07 UTC (3,128 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.