arXiv:2411.08133v1 Announce Type: new
Abstract: Neural networks have shown remarkable performance in various tasks, yet they remain susceptible to subtle changes in their input or model parameters. One particularly impactful vulnerability arises through the Bit-Flip Attack (BFA), where flipping a small number of critical bits in a model’s parameters can severely degrade its performance. A common technique for inducing bit flips in DRAM is the Row-Hammer attack, which exploits frequent uncached memory accesses to alter data. Identifying susceptible bits can be achieved through exhaustive search or progressive layer-by-layer analysis, especially in quantized networks. In this work, we introduce Impactful Bit-Flip Search (IBS), a novel method for efficiently pinpointing and flipping critical bits in full-precision networks. Additionally, we propose a Weight-Stealth technique that strategically modifies the model’s parameters in a way that maintains the float values within the original distribution, thereby bypassing simple range checks often used in tamper detection.
Source link
lol