Bangla Grammatical Error Detection Leveraging Transformer-based Token Classification

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2411.08344v1 Announce Type: new
Abstract: Bangla is the seventh most spoken language by a total number of speakers in the world, and yet the development of an automated grammar checker in this language is an understudied problem. Bangla grammatical error detection is a task of detecting sub-strings of a Bangla text that contain grammatical, punctuation, or spelling errors, which is crucial for developing an automated Bangla typing assistant. Our approach involves breaking down the task as a token classification problem and utilizing state-of-the-art transformer-based models. Finally, we combine the output of these models and apply rule-based post-processing to generate a more reliable and comprehensive result. Our system is evaluated on a dataset consisting of over 25,000 texts from various sources. Our best model achieves a Levenshtein distance score of 1.04. Finally, we provide a detailed analysis of different components of our system.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.