Mathematical Derivation Graphs: A Task for Summarizing Equation Dependencies in STEM Manuscripts

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2410.21324v1 Announce Type: new
Abstract: Recent advances in natural language processing (NLP), particularly with the emergence of large language models (LLMs), have significantly enhanced the field of textual analysis. However, while these developments have yielded substantial progress in analyzing textual data, applying analysis to mathematical equations and their relationships within texts has produced mixed results. In this paper, we take the initial steps toward understanding the dependency relationships between mathematical expressions in STEM articles. Our dataset, sourced from a random sampling of the arXiv corpus, contains an analysis of 107 published STEM manuscripts whose inter-equation dependency relationships have been hand-labeled, resulting in a new object we refer to as a derivation graph that summarizes the mathematical content of the manuscript. We exhaustively evaluate analytical and NLP-based models to assess their capability to identify and extract the derivation relationships for each article and compare the results with the ground truth. Our comprehensive testing finds that both analytical and NLP models (including LLMs) achieve $sim$40-50% F1 scores for extracting derivation graphs from articles, revealing that the recent advances in NLP have not made significant inroads in comprehending mathematical texts compared to simpler analytic models. While current approaches offer a solid foundation for extracting mathematical information, further research is necessary to improve accuracy and depth in this area.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.