View a PDF of the paper titled On high-dimensional modifications of the nearest neighbor classifier, by Annesha Ghosh and 3 other authors
Abstract:Nearest neighbor classifier is arguably the most simple and popular nonparametric classifier available in the literature. However, due to the concentration of pairwise distances and the violation of the neighborhood structure, this classifier often suffers in high-dimension, low-sample size (HDLSS) situations, especially when the scale difference between the competing classes dominates their location difference. Several attempts have been made in the literature to take care of this problem. In this article, we discuss some of these existing methods and propose some new ones. We carry out some theoretical investigations in this regard and analyze several simulated and benchmark datasets to compare the empirical performances of proposed methods with some of the existing ones.
Submission history
From: Annesha Ghosh [view email]
[v1]
Sat, 6 Jul 2024 17:53:53 UTC (5,426 KB)
[v2]
Tue, 22 Oct 2024 17:39:13 UTC (5,427 KB)
[v3]
Thu, 24 Oct 2024 15:47:36 UTC (5,427 KB)
Source link
lol