Grammatical Error Correction for Low-Resource Languages: The Case of Zarma

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2410.15539v1 Announce Type: cross
Abstract: Grammatical error correction (GEC) is important for improving written materials for low-resource languages like Zarma — spoken by over 5 million people in West Africa. Yet it remains a challenging problem. This study compares rule-based methods, machine translation (MT) models, and large language models (LLMs) for GEC in Zarma. We evaluate each approach’s effectiveness on our manually-built dataset of over 250,000 examples using synthetic and human-annotated data. Our experiments show that the MT-based approach using the M2M100 model outperforms others, achieving a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations, and scoring 3.0 out of 5.0 in logical/grammar error correction during MEs by native speakers. The rule-based method achieved perfect detection (100%) and high suggestion accuracy (96.27%) for spelling corrections but struggled with context-level errors. LLMs like MT5-small showed moderate performance with a detection rate of 90.62% and a suggestion accuracy of 57.15%. Our work highlights the potential of MT models to enhance GEC in low-resource languages, paving the way for more inclusive NLP tools.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.