NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot

Architecture of OpenAI



arXiv:2410.11492v1 Announce Type: cross
Abstract: Autonomous navigation of a mobile robot is a challenging task which requires ability of mapping, localization, path planning and path following. Conventional mapping methods build a dense metric map like an occupancy grid, which is affected by odometry error accumulation and consumes a lot of memory and computations in large environments. Another approach to mapping is the usage of topological properties, e.g. adjacency of locations in the environment. Topological maps are less prone to odometry error accumulation and high resources consumption, and also enable fast path planning because of the graph sparsity. Based on this idea, we proposed NavTopo – a full navigation pipeline based on topological map and two-level path planning. The pipeline localizes in the graph by matching neural network descriptors and 2D projections of the input point clouds, which significantly reduces memory consumption compared to metric and topological point cloud-based approaches. We test our approach in a large indoor photo-relaistic simulated environment and compare it to a metric map-based approach based on popular metric mapping method RTAB-MAP. The experimental results show that our topological approach significantly outperforms the metric one in terms of performance, keeping proper navigational efficiency.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.