Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2410.11355v1 Announce Type: cross
Abstract: Labeling datasets is a noteworthy challenge in machine learning, both in terms of cost and time. This research, however, leverages an efficient answer. By exploring label propagation in semi-supervised learning, we can significantly reduce the number of labels required compared to traditional methods. We employ a transductive label propagation method based on the manifold assumption for text classification. Our approach utilizes a graph-based method to generate pseudo-labels for unlabeled data for the text classification task, which are then used to train deep neural networks. By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning, thereby reducing labeling costs. Based on previous successes in other domains, this study builds and evaluates this approach’s effectiveness in sentiment analysis, presenting insights into semi-supervised learning.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.