Geometric Relational Embeddings

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2409.15369v1 Announce Type: new
Abstract: Relational representation learning transforms relational data into continuous and low-dimensional vector representations. However, vector-based representations fall short in capturing crucial properties of relational data that are complex and symbolic. We propose geometric relational embeddings, a paradigm of relational embeddings that respect the underlying symbolic structures. Specifically, this dissertation introduces various geometric relational embedding models capable of capturing: 1) complex structured patterns like hierarchies and cycles in networks and knowledge graphs; 2) logical structures in ontologies and logical constraints applicable for constraining machine learning model outputs; and 3) high-order structures between entities and relations. Our results obtained from benchmark and real-world datasets demonstrate the efficacy of geometric relational embeddings in adeptly capturing these discrete, symbolic, and structured properties inherent in relational data.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.