Orthogonal Finetuning for Direct Preference Optimization

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Orthogonal Finetuning for Direct Preference Optimization, by Chenxu Yang and 9 other authors

View PDF
HTML (experimental)

Abstract:DPO is an effective preference optimization algorithm. However, the DPO-tuned models tend to overfit on the dispreferred samples, manifested as overly long generations lacking diversity. While recent regularization approaches have endeavored to alleviate this issue by modifying the objective function, they achieved that at the cost of alignment performance degradation. In this paper, we innovatively incorporate regularization from the perspective of weight updating to curb alignment overfitting. Through the pilot experiment, we discovered that there exists a positive correlation between overfitting and the hyperspherical energy fluctuation. Hence, we introduce orthogonal finetuning for DPO via a weight-Rotated Preference Optimization (RoPO) method, which merely conducts rotational and magnitude-stretching updates on the weight parameters to maintain the hyperspherical energy invariant, thereby preserving the knowledge encoded in the angle between neurons. Extensive experiments demonstrate that our model aligns perfectly with human preferences while retaining the original expressive capacity using only 0.0086% of the trainable parameters, suggesting an effective regularization against overfitting. Specifically, RoPO outperforms DPO by up to 10 points on MT-Bench and by up to 2.8 points on AlpacaEval 2, while enhancing the generation diversity by an average of 6 points.

Submission history

From: Chenxu Yang [view email]
[v1]
Mon, 23 Sep 2024 09:09:16 UTC (2,282 KB)
[v2]
Tue, 24 Sep 2024 03:22:15 UTC (2,374 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.