Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2409.15027v1 Announce Type: new
Abstract: Large language models (LLMs) have shown remarkable capabilities in various natural language tasks and are increasingly being applied in healthcare domains. This work demonstrates a new LLM-powered disease risk assessment approach via streaming human-AI conversation, eliminating the need for programming required by traditional machine learning approaches. In a COVID-19 severity risk assessment case study, we fine-tune pre-trained generative LLMs (e.g., Llama2-7b and Flan-t5-xl) using a few shots of natural language examples, comparing their performance with traditional classifiers (i.e., Logistic Regression, XGBoost, Random Forest) that are trained de novo using tabular data across various experimental settings. We develop a mobile application that uses these fine-tuned LLMs as its generative AI (GenAI) core to facilitate real-time interaction between clinicians and patients, providing no-code risk assessment through conversational interfaces. This integration not only allows for the use of streaming Questions and Answers (QA) as inputs but also offers personalized feature importance analysis derived from the LLM’s attention layers, enhancing the interpretability of risk assessments. By achieving high Area Under the Curve (AUC) scores with a limited number of fine-tuning samples, our results demonstrate the potential of generative LLMs to outperform discriminative classification methods in low-data regimes, highlighting their real-world adaptability and effectiveness. This work aims to fill the existing gap in leveraging generative LLMs for interactive no-code risk assessment and to encourage further research in this emerging field.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.