arXiv:2408.11278v1 Announce Type: new
Abstract: Federated Learning (FL) has emerged as an excellent solution for performing deep learning on different data owners without exchanging raw data. However, statistical heterogeneity in FL presents a key challenge, leading to a phenomenon of skewness in local model parameter distributions that researchers have largely overlooked. In this work, we propose the concept of parameter skew to describe the phenomenon that can substantially affect the accuracy of global model parameter estimation. Additionally, we introduce FedSA, an aggregation strategy to obtain a high-quality global model, to address the implication from parameter skew. Specifically, we categorize parameters into high-dispersion and low-dispersion groups based on the coefficient of variation. For high-dispersion parameters, Micro-Classes (MIC) and Macro-Classes (MAC) represent the dispersion at the micro and macro levels, respectively, forming the foundation of FedSA. To evaluate the effectiveness of FedSA, we conduct extensive experiments with different FL algorithms on three computer vision datasets. FedSA outperforms eight state-of-the-art baselines by about 4.7% in test accuracy.
Source link
lol