DIVE: Towards Descriptive and Diverse Visual Commonsense Generation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.08021v1 Announce Type: new
Abstract: Towards human-level visual understanding, visual commonsense generation has been introduced to generate commonsense inferences beyond images. However, current research on visual commonsense generation has overlooked an important human cognitive ability: generating descriptive and diverse inferences. In this work, we propose a novel visual commonsense generation framework, called DIVE, which aims to improve the descriptiveness and diversity of generated inferences. DIVE involves two methods, generic inference filtering and contrastive retrieval learning, which address the limitations of existing visual commonsense resources and training objectives. Experimental results verify that DIVE outperforms state-of-the-art models for visual commonsense generation in terms of both descriptiveness and diversity, while showing a superior quality in generating unique and novel inferences. Notably, DIVE achieves human-level descriptiveness and diversity on Visual Commonsense Graphs. Furthermore, human evaluations confirm that DIVE aligns closely with human judgments on descriptiveness and diversityfootnote{Our code and dataset are available at https://github.com/Park-ing-lot/DIVE.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.