PushPull-Net: Inhibition-driven ResNet robust to image corruptions

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


[Submitted on 7 Aug 2024]

View a PDF of the paper titled PushPull-Net: Inhibition-driven ResNet robust to image corruptions, by Guru Swaroop Bennabhaktula and 2 other authors

View PDF
HTML (experimental)

Abstract:We introduce a novel computational unit, termed PushPull-Conv, in the first layer of a ResNet architecture, inspired by the anti-phase inhibition phenomenon observed in the primary visual cortex. This unit redefines the traditional convolutional layer by implementing a pair of complementary filters: a trainable push kernel and its counterpart, the pull kernel. The push kernel (analogous to traditional convolution) learns to respond to specific stimuli, while the pull kernel reacts to the same stimuli but of opposite contrast. This configuration enhances stimulus selectivity and effectively inhibits response in regions lacking preferred stimuli. This effect is attributed to the push and pull kernels, which produce responses of comparable magnitude in such regions, thereby neutralizing each other. The incorporation of the PushPull-Conv into ResNets significantly increases their robustness to image corruption. Our experiments with benchmark corruption datasets show that the PushPull-Conv can be combined with other data augmentation techniques to further improve model robustness. We set a new robustness benchmark on ResNet50 achieving an $mCE$ of 49.95$%$ on ImageNet-C when combining PRIME augmentation with PushPull inhibition.

Submission history

From: Guru Swaroop Bennabhaktula [view email]
[v1]
Wed, 7 Aug 2024 20:36:20 UTC (3,158 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.