Lifelong Person Search

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.21252v1 Announce Type: new
Abstract: Person search is the task to localize a query person in gallery datasets of scene images. Existing methods have been mainly developed to handle a single target dataset only, however diverse datasets are continuously given in practical applications of person search. In such cases, they suffer from the catastrophic knowledge forgetting in the old datasets when trained on new datasets. In this paper, we first introduce a novel problem of lifelong person search (LPS) where the model is incrementally trained on the new datasets while preserving the knowledge learned in the old datasets. We propose an end-to-end LPS framework that facilitates the knowledge distillation to enforce the consistency learning between the old and new models by utilizing the prototype features of the foreground persons as well as the hard background proposals in the old domains. Moreover, we also devise the rehearsal-based instance matching to further improve the discrimination ability in the old domains by using the unlabeled person instances additionally. Experimental results demonstrate that the proposed method achieves significantly superior performance of both the detection and re-identification to preserve the knowledge learned in the old domains compared with the existing methods.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.