IgnitionInnovators at “Discharge Me!”: Chain-of-Thought Instruction Finetuning Large Language Models for Discharge Summaries

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.17636v1 Announce Type: new
Abstract: This paper presents our proposed approach to the Discharge Me! shared task, collocated with the 23th Workshop on Biomedical Natural Language Processing (BioNLP). In this work, we develop an LLM-based framework for solving the Discharge Summary Documentation (DSD) task, i.e., generating the two critical target sections `Brief Hospital Course’ and `Discharge Instructions’ in the discharge summary. By streamlining the recent instruction-finetuning process on LLMs, we explore several prompting strategies for optimally adapting LLMs to specific generation task of DSD. Experimental results show that providing a clear output structure, complimented by a set of comprehensive Chain-of-Thoughts (CoT) questions, effectively improves the model’s reasoning capability, and thereby, enhancing the structural correctness and faithfulness of clinical information in the generated text. Source code is available at: https://github.com/antangrocket1312/Discharge_LLM



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.