Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.17611v1 Announce Type: new
Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a robust framework for solving Partial Differential Equations (PDEs) by approximating their solutions via neural networks and imposing physics-based constraints on the loss function. Traditionally, Multilayer Perceptrons (MLPs) are the neural network of choice, and significant progress has been made in optimizing their training. Recently, Kolmogorov-Arnold Networks (KANs) were introduced as a viable alternative, with the potential of offering better interpretability and efficiency while requiring fewer parameters. In this paper, we present a fast JAX-based implementation of grid-dependent Physics-Informed Kolmogorov-Arnold Networks (PIKANs) for solving PDEs. We propose an adaptive training scheme for PIKANs, incorporating known MLP-based PINN techniques, introducing an adaptive state transition scheme to avoid loss function peaks between grid updates, and proposing a methodology for designing PIKANs with alternative basis functions. Through comparative experiments we demonstrate that these adaptive features significantly enhance training efficiency and solution accuracy. Our results illustrate the effectiveness of PIKANs in improving performance for PDE solutions, highlighting their potential as a superior alternative in scientific and engineering applications.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.