SmartQuant: CXL-based AI Model Store in Support of Runtime Configurable Weight Quantization

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.15866v1 Announce Type: new
Abstract: Recent studies have revealed that, during the inference on generative AI models such as transformer, the importance of different weights exhibits substantial context-dependent variations. This naturally manifests a promising potential of adaptively configuring weight quantization to improve the generative AI inference efficiency. Although configurable weight quantization can readily leverage the hardware support of variable-precision arithmetics in modern GPU and AI accelerators, little prior research has studied how one could exploit variable weight quantization to proportionally improve the AI model memory access speed and energy efficiency. Motivated by the rapidly maturing CXL ecosystem, this work develops a CXL-based design solution to fill this gap. The key is to allow CXL memory controllers play an active role in supporting and exploiting runtime configurable weight quantization. Using transformer as a representative generative AI model, we carried out experiments that well demonstrate the effectiveness of the proposed design solution.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.